cara mencari kofaktor matriks 3x3

Terdapatdua cara yang bisa dilakukan untuk mencari determinannya, yaitu menggunakan aturan Sarrus dan metode minor-kofaktor. B. Invers Matriks Berodo 2x2 Dan 3x3. 1. Invers Matriks Berodo 2x2. Untuk menemukan matriks invers 2×2 yang berdekatan, kita hanya perlu menukar atau memindahkan elemen yang posisinya ada di baris pertama kolom pertama Untukλ = 2 maka. Misalkan diberikan a metriks 3x3 dan vektor x. Untuk menentukan nilai yang skalar, berlaku: nilai eigen dan vektor eigen. Bagaimana cara mencari nilai eigen dan vektor eigen pada matriks berodo 3x3 g. Suatu spl akan memiliki penyelesaian apabila nilai determinannya tidak. Proses pengerjaan nilai dan vektor eigen Caramencari nilai x agar matriks singular penma 2b. Tentukan nilai determinan dari matriks ordo 3x3 berikut : . Invers matriks 3x3 rumus cepat . Pada penjelasan sebelumnya tentang determinan matriks, kamu udah tau kan bagaimana cara mencari. Misalnya matriks ordo 2 x 3 dapat dikalikan dengan matriks ordo 3 x 3. a11, a 12, a 13 = baris pertama . a 11, a 21, a 31 = kolom pertama . Minor (M ij ) suatu determinan yang dihasilkan setelah menghapus baris ke-i dan kolom ke-j.. Contoh: Kofaktor adalah minor unsur beserta tanda.Kofaktor memiliki rumus. K ij = (-1) i+j .M ij. Contohnya : Determinan matriks A berdasarkan kofaktor baris pertama. Baris pertama urutannya ( +, -, +), baris kedua ( kebalikannya Contoh Misalkan suatu matriks A berukuran 3x3 seperti berikut ini: maka diperoleh: Related: Perhitungan Determinan dengan Minor-Kofaktor. Definisi: Misalkan suatu matriks A = (aᵢⱼ)ₙₓₙ dan aᵢⱼ kofaktor elemen aᵢⱼ, maka: Contoh 1: Hitunglah determinan matriks berikut". Jawab: Meilleurs Sites De Rencontres Haut De Gamme. Berikut ini mimin sajikan cara menentukan minor dan kofaktor matriks ordo 3x3. Selamat membaca, sobat. Semoga matriks $A = \begin{pmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\end{pmatrix}$Minor elemen $a_{ij}$ dinotasikan dengan $M_{ij}$ adalah determinan dari matriks baru ordo 2x2 yang diperoleh setelah elemen-elemen pada baris ke-$i$ dan kolom ke-$j$ dihilangkan.$\bullet$ Misal akan dicari $M_{11}$, maka kita hilangkan elemen-elemen baris ke-$1$ dan kolom ke-$1$ seperti berikutSehingga diperoleh $M_{11}=\begin{vmatrix} a_{22} & a_{23}\\ a_{32} & a_{33} \end{vmatrix}$Untuk selanjutnya, kita dapat mencari minor yang lain dengan cara yang serupa seperti diatas.$\bullet ~M_{12}$ hilangkan elemen-elemen baris ke-$1$ dan kolom ke-$2$Sehingga diperoleh $M_{12}=\begin{vmatrix} a_{21} & a_{23}\\ a_{31} & a_{33} \end{vmatrix}$$\bullet ~M_{13}$ hilangkan elemen-elemen baris ke-$1$ dan kolom ke-$3$Sehingga diperoleh $M_{13}=\begin{vmatrix} a_{21} & a_{22}\\ a_{31} & a_{32} \end{vmatrix}$$\bullet~M_{21}$ hilangkan elemen-elemen baris ke-$2$ dan kolom ke-$1$Sehingga diperoleh $M_{21}=\begin{vmatrix} a_{12} & a_{13}\\ a_{32} & a_{32} \end{vmatrix}$$\bullet~M_{22}$ hilangkan elemen-elemen baris ke-$2$ dan kolom ke-$2$Sehingga diperoleh $M_{22}=\begin{vmatrix} a_{11} & a_{13}\\ a_{31} & a_{33} \end{vmatrix}$$\bullet~M_{23}$ hilangkan elemen-elemen baris ke-$2$ dan kolom ke-$3$Sehingga diperoleh $M_{23}=\begin{vmatrix} a_{11} & a_{12}\\ a_{31} & a_{32} \end{vmatrix}$$\bullet~M_{31}$ hilangkan elemen-elemen baris ke-$3$ dan kolom ke-$1$Sehingga diperoleh $M_{31}=\begin{vmatrix} a_{12} & a_{13}\\ a_{22} & a_{23} \end{vmatrix}$$\bullet~M_{32}$ hilangkan elemen-elemen baris ke-$3$ dan kolom ke-$2$Sehingga diperoleh $M_{32}=\begin{vmatrix} a_{11} & a_{13}\\ a_{21} & a_{23} \end{vmatrix}$$\bullet~M_{33}$ hilangkan elemen-elemen baris ke-$3$ dan kolom ke-$3$Sehingga diperoleh $M_{33}=\begin{vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{vmatrix}$KofaktorKofaktor elemen $a_{ij}$ dinotasikan dengan $K_{ij}$ adalah hasil kali $-1^{i+j}$ dengan minor elemen tersebut. Sehingga didapat rumus untuk mencari kofaktor sebagai berikut.$K_{ij}=-1^{i+j} ~ M_{ij} $Ket $K_{ij}$ merupakan kofaktor elemen $a_{ij}$ $M_{ij}$ merupakan minor elemen $a_{ij}$Dari matriks $A = \begin{pmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33}\end{pmatrix}$, dapat diperoleh kofaktor-kofaktor sebagai berikut.$K_{11}=-1^{1+1} ~ M_{11}= M_{11} $$K_{12}=-1^{1+2} ~ M_{12}= -M_{12} $$K_{13}=-1^{1+3} ~ M_{13}= M_{13}$$K_{21}=-1^{2+1} ~ M_{21}= -M_{21}$$K_{22}=-1^{2+2} ~ M_{22}= M_{22}$$K_{23}=-1^{2+3} ~ M_{23}= -M_{23}$$K_{31}=-1^{3+1} ~ M_{31}= M_{31}$$K_{32}=-1^{3+1} ~ M_{32}= -M_{32}$$K_{33}=-1^{3+3} ~ M_{33}= M_{33}$Sehingga didapat kofaktor matriks $A$ sebagai berikut.$\begin{aligned} kof~A &= \begin{pmatrix}K_{11} & K_{12} & K_{13}\\K_{21} & K_{22} & K_{23}\\ K_{31} & K_{32} & K_{33}\end{pmatrix}\\ \\ &= \begin{pmatrix}M_{11} & -M_{12} & M_{13}\\-M_{21} & M_{22} & -M_{23}\\ M_{31} & -M_{32} & M_{33}\end{pmatrix} \end{aligned}$Untuk lebih jelasnya, berikut ini contoh soal menentukan minor dan kofaktor matriks ordo 3x3Contoh soal Diketahui $B = \begin{pmatrix}~1 & 2 & 3~\\ ~2 & 5 & 3~\\~1 & 0 & 8~\end{pmatrix}$, maka $kof~B $ adalah ...Jawab$K_{11}=-1^{1+1} ~ \begin{vmatrix} 5 & 3\\ 0 & 8 \end{vmatrix}= 40-0=40 $$K_{12}=-1^{1+2} ~ \begin{vmatrix} 2 & 3\\ 1 & 8 \end{vmatrix}= -16-3=-13 $$K_{13}=-1^{1+3} ~ \begin{vmatrix} 2 & 5\\ 1 & 0 \end{vmatrix}= 0-5=-5$$K_{21}=-1^{2+1} ~ \begin{vmatrix} 2 & 3\\ 0 & 8 \end{vmatrix}= -16-0=-16$$K_{22}=-1^{2+2} ~ \begin{vmatrix} 1 & 3\\ 1 & 8 \end{vmatrix}= 8-3=5$$K_{23}=-1^{2+3} ~ \begin{vmatrix} 1 & 2\\ 1 & 0 \end{vmatrix}= -0-2=2$$K_{31}=-1^{3+1} ~ \begin{vmatrix} 2 & 3\\ 5 & 3 \end{vmatrix}= 6-15=-9$$K_{32}=-1^{3+1} ~ \begin{vmatrix} 1 & 3\\ 2 & 3 \end{vmatrix}= -3-6=3$$K_{33}=-1^{3+3} ~ \begin{vmatrix} 1 & 2\\ 2 & 5 \end{vmatrix}= 5-4=1$Jadi, $kof~B = \begin{pmatrix}40 & -13 & -5\\-16 & 5 & 2\\ -9 & 3 & 1\end{pmatrix}$Demikianlah ulasan terkait cara menentukan minor dan kofaktor matriks ordo 3x3. Semoga bermanfaat. ReferensiE. S., Pesta dan Cecep Anwar H. F. S. 2008. Matematika aplikasi untuk SMA dan MA kelas XII program studi ilmu alam. Jakarta Pusat Perbukuan Departemen Pendidikan Nasional. Y., Rosihan Ari dan Indriyastuti. 2009. Khasanah Matematika 3 untuk kelas XII SMA/MA Program Bahasa. Jakarta Pusat Perbukuan Departemen Pendidikan Nasional. cara mengerjakan determinan matriks ordo 3x3 dengan kofaktor? 1. cara mengerjakan determinan matriks ordo 3x3 dengan kofaktor? 2. buatkan matriks dengan ordo 3x3 dan carilah a minor b kofaktor c determinan 3. jawablah determinan matriks 3x3 berikut ini dengan metode kofaktor.​ 4. bagaimana cara perkalian matriks 3x3 sama dengan 3x2 dan sebaliknya 3x2 sama dengan 3x3?? 5. bagaimana cara mencari determinan dari matriks 3x3 jika hanya diketahui adjointnya dan <0? 6. Cara mencari Adjoin dari Matriks ORDO 3x3 7. buatkan sebuah matrik dengan ordo 3x3 dan carilah a. minor b. kofaktor c. determinan 8. carilah minor matriks kofaktor adjoin dan invers dari matrik matrik berikut ​ 9. ada yang ngerti cara mencari x pada matriks singular ber ordo 3x3 ? 10. Bagaimana cara mencari determinan dari matriks 3x3 jika hanya diketahui adjointnya dan <0? 11. Carilah minor, kofaktor, adjoin, dan invers dari matriks di bawah ini tolong bantuanya yaaa ☺ 12. 20 contoh soal dan jawabanya tentang determinan matriks ordo 3x3 metode kofaktor 13. Yang merupakan transpos dari kofaktor suatu matriks adalah 14. Carilah minor,kofaktor,adjoin dan invers dari matriks di bawah ini. tolong bantuanya yaaa 15. gimana cara menyelesaikan perkalian matriks ordo 3x3 dengan 3x3 1. cara mengerjakan determinan matriks ordo 3x3 dengan kofaktor? memakai ekspansi baris atau kolom 2. buatkan matriks dengan ordo 3x3 dan carilah a minor b kofaktor c determinan ordo 3×3 adalah kofaktor 3. jawablah determinan matriks 3x3 berikut ini dengan metode kofaktor.​ Jawaban A= -55Penjelasan dengan langkah-langkah=1.10+56 - 4.4+24 + 9.14-15= - + 9. -1=66 - 112 + -9= -55kalo salah maaf ya, ini saya pake cara cepat 4. bagaimana cara perkalian matriks 3x3 sama dengan 3x2 dan sebaliknya 3x2 sama dengan 3x3?? Salam BrainlySenin, 10 Desember 2018JawabPenjelasan dengan langkah-langkahPerkalian matriks ordo 3x3 degn 3x2 atau sebaliknya.. Tdk dapat dikalikan krna baris matriks ordo 3x3 tidak sama degn kolom matriks 3x2 5. bagaimana cara mencari determinan dari matriks 3x3 jika hanya diketahui adjointnya dan <0? Jawaban6Penjelasan dengan langkah-langkah3×3=6-0=6 gampang kan 6. Cara mencari Adjoin dari Matriks ORDO 3x3 1. Matriks Kofaktor2. Adjoin3. Nilai elemen4. rumus invers Matriks ordo 3 x 3 7. buatkan sebuah matrik dengan ordo 3x3 dan carilah a. minor b. kofaktor c. determinan ordi 3×3 adalah kofaktora= 2 1 4 -1 3 2 1 4 5minora= 7 -7 -7 -11 6 7 -5 8 8kofaktor a= 7 7 -7 11 6 -7 -5 -8 8determinandet a = 14+7-28 = -7 8. carilah minor matriks kofaktor adjoin dan invers dari matrik matrik berikut ​ JawabPenjelasan dengan langkah-langkahkalo betul jaikan jawaban tercerdas y 9. ada yang ngerti cara mencari x pada matriks singular ber ordo 3x3 ? matriks singular itudeterminan matriks = 0 10. Bagaimana cara mencari determinan dari matriks 3x3 jika hanya diketahui adjointnya dan <0? Penjelasan dengan langkah-langkahKalikan angka yang telah ditemukan denganelemen yang Anda pilih. Ingat, Anda telahmemilih elemen dari baris atau kolom referensiketika Anda memutuskan baris dan kolom yangakan dicoret. Kalikan elemen ini dengandeterminan matriks 2 x 2 yang telah Andatemukan.•Pada contoh, kita memilih a11 yang bernilai1. Kalikan angka ini dengan -34 determinandari matriks 2 x 2 untuk mendapatkan 1*-34= simbol dari jawaban Anda. Langkahselanjutnya adalah Anda harus mengalikanjawaban Anda dengan 1 atau-1 untukmendapatkan kofaktor dari elemen yang Andapilih. Simbol yang Anda gunakan tergantungdengan letak elemen pada matriks 3 x 3. Ingat,tabel simbol ini digunakan untuk menentukanpengali elemen AndaKarena kita memilih a11 yang bertanda a +,kita akan mengalikan angka dengan +1 ataudengan kata lain, jangan diubah. Jawabanyang muncul akan sama, yaitu• Cara lain untuk menentukan simbol adalahdengan menggunakan formula -1i+j yangmana i dan j adalah baris dan kolom proses yang sama untuk elemenketiga. Anda memiliki satu kofaktor lagiuntuk menentukan determinan. Hitung i untukelemen ketiga di baris atau kolom referensi merupakan cara cepat menghitungkofaktor a13 pada contoh kitaCoret baris ke-1 dan kolom ke-3 untuk4mendapatkan [24 61Determinannya adalah 2*6 - 4*4 = dengan elemen a13 -4 * 3 = -12.• Elemen a13 bersimbol + pada tabel simbol,sehingga jawabannya adalah = a + a + a6 Ulangi proses ini untuk elemen kedua padabaris atau kolom referensi Anda. Kembalilahke matriks awal 3 x 3 yang Anda lingkari barisatau kolomnya sebelumnya. Ulangi proses yangsama dengan elemen tersebut⚫ Coret baris dan kolom elemen tersebut. Padakasus ini, pilih elemen a12 yang bernilai 5.Coret baris ke-1 1 5 3 dan kolom ke-2 5 4 6.Jadikan elemen yang tersisa menjadimatriks 2x2. Pada contoh kita, matriks ordo2x2 untuk elemen kedua adalah [24 721• Tentukan determinan matriks 2x2 formula ad - bc. 2*2 - 7*4 = -24• Kalikan dengan elemen pada matriks 3x3yang Anda pilih. -24 * 5 = -120• Putuskan untuk mengalikan hasil di atasdengan -1 atau tidak. Gunakan tabel simbolatau formula -1ij Pilih elemen a12 yangpada tabel simbol. Ganti simboljawaban kita dengan -1*-120 = hasil ketiga hitungan Anda. Iniadalah langkah terakhir. Anda telahmenghitung tiga kofaktor, satu untuk setiapelemen pada satu baris atau kolom. Jumlahkanhasil tersebut dan Anda akan menemukandeterminan matriks 3 x 3.• Pada contoh, determinan matriks adalah -34 +120 +-12-74 11. Carilah minor, kofaktor, adjoin, dan invers dari matriks di bawah ini tolong bantuanya yaaa ☺ kalo bener jadikan yang terbaik ya.. sukses dek 12. 20 contoh soal dan jawabanya tentang determinan matriks ordo 3x3 metode kofaktor 3×3=9 betul betul betul 13. Yang merupakan transpos dari kofaktor suatu matriks adalah yaitu adjoin dari suatu matriks 14. Carilah minor,kofaktor,adjoin dan invers dari matriks di bawah ini. tolong bantuanya yaaa kalau nyatet sambil di cek ya kali aja ad salah hitung 15. gimana cara menyelesaikan perkalian matriks ordo 3x3 dengan 3x3 kyk gitu ditambah dan dikurangi baru nanti di kali aja insyalloh ktmu.. semoga membantu

cara mencari kofaktor matriks 3x3